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Abstract

The thermoelectroelastic problems for a hole of various shapes embedded in an in®nite matrix are considered in
this paper. Using Stroh's formalism and the technique of conformal mapping, a uni®ed solution is obtained in

closed-form for an in®nite thermopiezoelectric plate with various holes induced by thermal loads. The loads may be
uniform remote heat ¯ow, point heat source and temperature discontinuity. Further a detailed discussion on the
critical points for the mapping function of a piezoelectric plate with polygonal holes is presented and the study

shows that the transformation is nonsingle-valued. A simple approach is given to treat such a situation. As an
application of the proposed solutions, a system of singular integral equations for the unknown temperature
discontinuity and the dislocation of elastic displacement and electric potential de®ned on crack faces is developed

and solved numerically. Numerical results are presented to illustrate the application of the proposed
formulation. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Studies on the stress concentration induced by holes or cracks in composite materials has been a topic
of considerable research, and many useful results and conclusions have been made during the past
decades (Kachanov et al., 1994). Of various holes the elliptic shape has evoked the most interest among
researchers for isothermal problems because of its ¯exibility to include the other special shapes such as
circles or cracks. However, the optimization process on a class of hole shapes showed that the optimized
hole is not necessary an ellipse (Dhir, 1981). Thus the study on thermal stress induced by holes di�ering
from ellipse is also of engineering importance. For isotropic materials, Evan-Iwanowski (1956) used the
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complex variable approach to derive the stress solutions for an in®nite isotropic plate with a triangular

inlay. Florence and Goodier (1960) studied the thermal stress for an isotropic medium containing an

insulated oval hole. Based on the complex variable method, Chen (1967) studied the orthotropic

medium with a circular or elliptic hole, and obtained a complex form solution for the hoop stress

around the hole. Zimmerman (1986) studied the compressibility of holes by way of conformal mapping

of a hole onto a unit circle. Kachanov et al. (1994) developed a uni®ed description concerning both

cavities and cracks. For orthotropic plate with rectangular openings, work has been done by Jong

(1981) and Rajaiah and Naik (1983). Their results were based on the solutions given by Lekhnitskii

(1968), which are only approximate solutions due to the mathematical di�culties involved. Based on the

Stroh formalism and complex conformal mapping, Hwu (1990) obtained the stress ®elds for an

anisotropic elastic plate with an hole of various shapes subjected to remote uniform mechanical loading.

For plane piezoelectric material without considering thermal e�ect, Sosa and Khutoryansky (1996)

obtained an analytical solution of piezoelectricity with an elliptic hole. Chung and Ting (1996) also

presented a general solution for piezoelectric plate with an elliptic inclusion. Recently, Hwu and Yen

(1991) obtained the Green's functions satisfying traction-free boundary conditions around an elliptic

hole of anisotropic materials using Stroh's formalism. Ting (1992) in his work presented the Green's

functions for half-space and bimaterials of anisotropic plates. Later, Yen et al. (1995) and Ting (1996)

obtained Green's functions for a line force and a line dislocation located outside, inside or on the

interface of an elliptic inclusion of general anisotropic elastic materials. In the literature, however, there

is very little work concerned with the thermoelastic Green's function. Sturla and Barber (1988) obtained

a solution of thermoelastic Green's functions for two-dimensional problem of an in®nite elastic plate

subjected to a temperature discontinuity along the axis x2 � 0: Qin et al. (1999) in their work presented

thermoelectroelastic Green's functions for bimaterial.

Besides the fundamental academic interest, the determination of appropriate mapping functions in

hole problems is also considerable importance. It is relatively simple in the case of isotropic materials

because only a single mapping function is required. The conformal-mapping becomes considerably

di�cult in the case of piezoelectric materials, since it requires ®nding four distinct mapping functions

which transform the complex parameter regions onto the exterior of a unit circle. For general

anisotropic materials, Lekhnitskii (1968) presented a conformal-mapping scheme to solve a number of

problems on elliptical holes and inclusions. By combining the boundary-perturbation approach and

Lekhnitskii's conformal mapping scheme, Gao (1992) obtained a ®rst-order perturbation solution for

anisotropic elastic solids with a smooth polygonal hole. To make it clear in what cases the conformal

mapping scheme can be applied to general boundary value problem, Wang and Tarn (1993) investigated

the conditions under which the conformal mapping is possible. Their study indicated that the conformal

mapping in the entire region outside the unit circles possible only for elliptic contour or for anisotropy

of a special kind. Hwu (1992) in his study on anisotropic media revealed that the mapping function zk�
a�a1kzk�a2kzÿ1k �em1a3kz

m
k �em1a4kz

ÿm
k � will map the contour of a polygonal hole on to a circle in the z-

plane, and there will be m distinct zk located outside the unit circle. The problem is that which one

should we take. Hwu (1992) in his study chose one nearest jzj � 1 as the mapping point, but no

explanation can be found in his paper. This is the motivation that we try to explain the reasons why the

one nearest jzj � 1 should be chosen in this paper.

In view of the above analysis, the purpose of this paper is to present a uni®ed thermoelectroelastic

solution for an in®nite thermopiezoelectric plate with various openings induced by thermal loads. The

load may be uniform remote heat ¯ow, point heat source and temperature discontinuity. The solutions

for the later two cases are often called as Green's function, which has a wide application in boundary

element technique and other numerical analysis. The Green's function developed is used to derive the

thermoelectroelastic solution for the interaction between a crack and a hole embedded in an in®nite
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thermopiezoelectric plate. Numerical results for SED intensity factors are presented to verify the
e�ectiveness of the proposed formulation.

2. Preliminary formulations

2.1. Stroh formulation for linear thermopiezoelectric solid

Consider a linear piezoelectric solid where all ®elds are the function of x1 and x2 only. Cartesian
coordinate system (x1, x2, x3) is used for the description of all ®eld quantities and, boldfaced symbols
stand for either column vectors or matrices, depending on whether lower case or upper case is used. For
stationary behaviour in the absence of body heat source, free electric charge and body forces, the Stroh
formulation of linear thermoelectroelasticity can be found in Mindlin (1974) and Barnett and Lothe
(1975):

T � g 0�zt � � g 0�zt � �1a�

W � ÿikg 0�zt � � ikg 0�zt� �1b�

h1 � ÿW,2 h2 � W,1 �1c�

u � AF�z�q� cg�zt � � AF�z�q� cg�zt � �1d�

fff � BF�z�q� dg�zt � � BF�z�q� dg�zt � �1e�

PPP1 � ÿfff,2, PPP2 � fff,1 �1f�
with

F�z� � diag
�
f�z1� f�z2� f�z3� f�z4�

�
zt � x1 � tx2, zi � x1 � pix2 �2�

where overbar denotes the complex conjugate, a prime represents the di�erentiation with respect to the
argument, q is a constant vector to be determined by the boundary conditions, u� fu1 u2 u3 jgT, PPPj �
fs1j s2j s3j Dj gT, j � 1,2; i � �������ÿ1p

, k � �������������������������
k11k22 ÿ k2

12

p
, kij are the coe�cients of heat conduction, ui and j

are the elastic displacement and electric potential (EDEP), T, hi, sij and Di are temperature, heat ¯ow,
stress and electric displacement, t and pi are the heat and electroelastic eigenvalues of the materials
whose imaginary parts are positive, W and f are known as heat-¯ow function and SED function (Qin,
1998), f �zi � and g�zt� are arbitrary functions with complex arguments zi and zt, respectively, A, B, c and
d are well-de®ned in the literature (see Qin et al., 1999 for example).

2.2. One-to-one mapping

The contour of the hole used, say G (see Fig. 1), in this paper is represented by (Hwu, 1990)

Q.-H. Qin / International Journal of Solids and Structures 37 (2000) 5561±5578 5563



x1 � a�cos c� geml cos mc�, x2 � a�esin cÿ gemlsin mc� �3�
where eij � 1 if i 6�j; eij � 0 if i � j, 0 < eR1, m is an integer and have same value for subscript and for
the argument of functions. By an appropriate selection of the parameters e, m and g, we can obtain
various special kinds of holes, such as ellipse �m � 1), circle �m � e � 1), triangular �m � 2), square
�m � 3� and pentagon �m � 4). Since the conformal mapping is a fundamental tool used to ®nd the
solution of hole problem, the transformation (Hwu, 1990)

zk � a
�
a1kzk � a2kz

ÿ1
k � emla3kz

m
k � emla4kz

ÿm
k

�
�4�

in which

a1k � 1ÿ ipke

2
, a2k � 1� ipke

2
, a3k � g�1� ipke�

2
, a4k � g�1ÿ ipke�

2
�5�

will be used to map the contour of the hole on to a unit circle in the z-plane. For a particular value of
zk, there exist 2m roots for zk in Eq. (4). Numerical study on Eq.(4) shows that half of the roots are
located outside the unit circle, and the remaining are inside the unit circle. Thus, the transformation (4)
will be single-valued for m � 1 (ellipse) since only one root locates outside the unit circle. For m > 1,
however, the transformation (4) is multi-valued as there are m roots located outside the unit circle. The
question is which one should be chosen. To ®x this, some numerical investigation has been performed
and the typical results are listed in Tables 1±3 for a � e � 1and g � 0:1: In these tables,
pk � ÿ0:2291853� 1:003833i, which is one of the eigenvalues of material BaTiO3 used in Section 5,
jzj2 � z�z, zki is the ith root of zk for Eq. (4). It is found from the tables that the magnitudes among the
m-roots are obviously di�erent from each other. In order to show which mapping points can provide
correct solutions some numerical results are presented in Section 5. The numerical results show the root,
say z�k, whose magnitude has a minimum value among the m-roots, can provide acceptable results. So
we will chose z�k as the solution for Eq. (4) in our analysis. Hence, the entire zk-plane is now mapped

Fig. 1. Geometry of a particular hole (a = 1, e = 1, m = 4, g � 0:1).
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onto part of the zk-plane with a one-to-one transformation. Moreover, it is interesting to see from
Tables 1±3 that the real and imaginary parts of z�k always keep the same symbol as those of zk, i.e.,
Sign�Im�zk�� � Sign�Im�z�k�� and Sign�Re�zk�� � Sign�Re�z�k��, where

Sign�x� �
8<: 1 if x > 0
0 if x � 0
ÿ1 if x < 0

�6�

which means that z�k and zk are always situated in the same quadrant of a rectangular coordinates
system.

3. Green's function for traction-free hole problem

Consider an in®nite piezoelectric plate contain a hole subjected to thermal loading. If the hole is
thermal-insulated, traction- and charge-free along the hole boundary, the boundary conditions at the
rim of the hole can be written as

W � fff � 0 �7�
here the following relations has been used (Hwu and Yen, 1993)

hn � W,s, tn � fff,s �8�
where n is the normal direction of the hole, s is the arc length measured along the hole boundary, tn
represents surface traction vector.

3.1. General solution for thermal ®eld

Based on the one-to-one mapping described above and the concept of perturbation given by Stagni
(1982), the general solution for temperature and heat-¯ow function can be assumed in the form (Hwu

Table 1

The properties of solution xkm for j = 2

zk 5� 5pk ÿ5� 5pk ÿ5ÿ 5pk 5ÿ 5pk
xk1 7:51ÿ 91:75i 16:35ÿ 92:73i 16:30ÿ 82:84i 5:156ÿ 81:586i
jxk1j 92.06 94.16 84.43 81.74

xk2 3:97� 4:52i ÿ4:885� 5:4757i ÿ4:85ÿ 4:41i 6:294ÿ 5:65i
jxk2j 6.016 7.338 6.555 8.458

Table 2

The properties of solution zkm for j = 3

zk 5� 5pk ÿ5� 5pk ÿ5ÿ 5pk 5ÿ 5pk
zk1 6.02 ÿ 8.63i 8.96 ÿ 8.07i 9.39 ÿ 5.05i ÿ8:96� 8:07i
jzk1j 10.52 12.06 10.66 12.06

zk2 ÿ9.39 + 5.05i ÿ7:73� 0:784i ÿ6:02� 8:63i 7.73 ÿ 0.784i

jzk2j 10.66 7.770 10.52 7.770

zk2 3:38� 3:60i ÿ1:221� 7:274i ÿ3:38ÿ 3:60i 1.221 ÿ 7.274i

jzk2j 4.938 7.376 4.938 7.376
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and Yen, 1993)

T � 2Re
�
g 0�zt�

� � 2Re
�
f0�zt � � f1�zt �

� �9�

W � ÿ2Re
�
ikg 0�zt�

� � ÿ2Re
�
ikf0�zt � � ikf1�zt �

� �10�

where f0 represents the solution associated with the unperturbed thermal ®eld and f1 is the function
corresponding to perturbed ®eld of the plate.

For a given loading condition, the function f0 can be obtained easily since it is related to the solution
of homogeneous media. When an in®nite plate subjected to a line temperature discontinuity T0 and a
line heat source h� both located at ẑt�� x10 � tx20�, the function f0 can be chosen in the form (Sturla
and Barber, 1988)

f0�zt � � q0ln
ÿ
zt ÿ z�i

� �11�
where zt and z�t are related to the complex arguments zt and ẑt through the transformation function (4),
and q0 is a complex constant which can be determined from the conditions�

C

dT � T0 and

�
C

dW � ÿh�, for any closed curve C enclosing the point z�t �12�

The substitution of Eq. (11) into Eqs. (12) yields

q0 � T0

4pi
ÿ h�

4pk
�13�

When the thermal load is uniform remote heat ¯ux h�h10, h20� the function f0 may be assumed as (Hwu
and Yen, 1993)

f0�zt � � q�0zt �14�
the in®nite condition provides

q�0 �
h10 � h20 �t
ik�tÿ �t� �15�

Thus, the boundary condition (7) requires that

Table 3

The properties of solution xkm for j = 4

zk 5� 5pk ÿ5� 5pk ÿ5ÿ 5pk 5ÿ 5pk
zk1 ÿ4:69ÿ 3:22i 4:58ÿ 2:98i 5:23ÿ 1:53i ÿ5:31ÿ 1:88i
jzk1j 5.689 5.464 5.449 5.633

xk2 ÿ2:02� 4:43i 1:94� 4:68i ÿ4:43ÿ 0:16i 4:78� 0:30i
jzk2j 4.869 5.066 4.433 4.789

zk3 3:71ÿ 3:61i ÿ3:52ÿ 4:15i 0:436� 5:58i ÿ0:94� 5:75i
jzk3j 5.177 5.442 5.597 5.826

zk4 3:01� 2:41i ÿ3:49� 2:45i ÿ1:255ÿ 3:90i 1:46ÿ 4:15i
jzk4j 3.856 4.264 4.097 4.399
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f1�zt � � �q0ln
�
zÿ1t ÿ �z

�
t

�
or f1�zt � � a �q�0

�
�a1tz

ÿ1
t � �a2tzt � �a3tz

ÿm
t � �a4tz

m
t

�
�16�

where

a1t � 1ÿ ite
2

, a2t � 1� ite
2

�17�

a3t � g�1� ite�
2

, a4t � g�1ÿ ite�
2

�18�

The function g in Eq. (9) can, thus, be obtained by integrating the functions f0 and f1 with respect to zt,
which leads to

g�zt � � aa1t

h
q0F1

ÿ
zt, z

�
t

�� �q0F2

�
zÿ1t , �z

�
t

�i
� a2t

h
q0F2

ÿ
zt, z

�
t

�� �q0F1

�
zÿ1t , �z

�
t

�i

�aej1a3t
h
q0F3

ÿ
zt, z

�
t

�� �q0F4

�
zÿ1t , �z

�
t

�i
� a4t

h
q0F4

ÿ
zt, z

�
t

�� �q0F3

�
zÿ1t , �z

�
t

�i
�19�

where

F1

ÿ
zt, z

�
t

� � ÿzt ÿ z�t
��

ln
ÿ
zt ÿ z�t

�ÿ 1
� �20�

F2

ÿ
zt, z

�
t

� � �zÿ1t ÿ z�ÿ1t

�
ln
ÿ
zt ÿ z�t

�� z�ÿ1t ln zt, �21�

F3

ÿ
zt, z

�
t

� � ÿzmt ÿ z�mt
�
ln
ÿ
zt ÿ z�t

�ÿ z�mt
Xm
n�1

1

n

�
zt
z�t

�n

, �22�

F4

ÿ
zt, z

�
t

� � ÿzÿmt ÿ z�ÿmt

�
ln
ÿ
zt ÿ z�t

�� z�ÿmt ln zt ÿ z�ÿmt

Xmÿ1
n�1

1

n

�
z�t
zt

�n

, �23�

The expression of g corresponding to the loading case q�0 can be also obtained similarly.

3.2. General solution for electroelastic ®eld

From Eqs. (1d) and (1e), the particular solution of electroelastic ®eld induced by thermal loading can
be written as

up � 2Re
�
cg�zt��, fffp � 2Re

�
dg�zt �

� �24�

where subscript `p' refers to particular solution.
The particular solutions (24) do not, generally, satisfy the boundary condition (7) along the hole

boundary. We, therefore, need to seek a corrective isothermal solution for a given problem when
superposed on the particular thermoelectroelastic solution the surface conditions (7) will be satis®ed.
Owing to the fact that f �zk� and g�zt� have the same order to a�ect the stress and electric displacement
in Eqs. (1d) and (1e), possible function forms come from the partition of g�zt�: They are
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f1�zk � � a
h
q0F1

ÿ
zk, z

�
t

�� q0F2

ÿ
zk, z

�
t

�� �q0F1

�
zÿ1k , �z

�
t

�
� �q0F2

�
zÿ1k , �z

�
t

�i
=2

�ej1ag
�
q0F3

ÿ
zk, z

�
t

�� q0F4

ÿ
zk, z

�
t

�� �q0F3

�
zÿ1k , �z

�
t

�
ÿ �q0F4

�
zÿ1k , z�t

��
=2,

f2�zk � � ipkae
h
ÿ q0F1

ÿ
zk, z

�
t

�
q0F2

ÿ
zk, z

�
t

�� �q0F1

�
zÿ1k , �z

�
t

�
ÿ �q0 ÿ F2

�
zÿ1k , �z

�
t

�i
=2

�iej1pkaeg
h
q0F3

ÿ
zk, z

�
t

�ÿ q0F4

ÿ
zk, z

�
t

�ÿ �q0F3

�
zÿ1k , �z

�
t

�
� �q0F4

�
zÿ1k , �z

�
t

�i
=2 �25�

where the subscripts 1 and 2 are the indices for the di�erent possible functions.
The Green's functions for the electroelastic ®elds can thus be chosen as

u � 2Re

(X2
k�1

�
AFk�z�qk

�� cg�zt �
)

�26a�

fff � 2Re

(X2
k�1

�
BFk�z�qk

�� dg�zt �
)

�26b�

Substitution of Eq. (25) into Eq. (26b), later into Eq. (7), leads to

q1 � ÿBÿ1 Åd, q2 � ÿPÿ1Bÿ1 Åd�t �27�
Substituting Eq. (27) into Eq. (26), the Green's functions can, then, be written as

u � 2Re
n
ÿ A

�
F1�z� � F2�z�Pÿ1 �t

�
Bÿ1 Åd� cg�zt �

o
�28�

fff � 2Re
n
ÿ B

�
F1�z� � F2�z�Pÿ1 �t

�
Bÿ1 Åd� dg�zt �

o
�29�

Solutions for loading case q�0 can be also obtained similarly, and we can prove that they are the same as
those given by Qin et al. (1999) if we neglect a uniform heat ¯ow in the solution domain.

4. Interaction between a crack and a hole

To illustrate the application of the proposed Green's functions, consider an in®nite piezoelectric plate
with a crack of length of 2c and a hole of various shapes subjected to heat ¯ux h0 on the crack faces.
The central point of the crack is denoted by z0k�� x10 � pkx20� and its orientation angle is denoted by a:
The geometry of the con®guration of the crack-hole system is shown in Fig. 2. The orientation of the
crack may be arbitrary. The mathematical statement of this problem can be stated more precisely as
follows

hn � h0, on crack faces �30a�
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PPPn � 0 on crack faces �30b�

hn � tn � 0 on the hole boundary �31�

hi � PPPi � 0 i � 1, 2; at infinity �32�
The boundary conditions (30), can be satis®ed by rede®ning the discrete Green's functions q0 in Eq. (19)
in terms of distributing Green's functionsq0�x� de®ned along the crack line, zt � z0t � Zz�t , ẑt � z0t � xz�t ,
where z0t � x10 � tx20, z�t � cos a� tsin a: In this case, the load parameter q0 appearing in Section 3
should be taken as T0�x=4Pi �: Enforcing the satisfaction of the applied heat ¯ux conditions on the crack
faces, a singular integral equation for the Green's function is obtained as

1

p
Re

��c
ÿc

�
1

Zÿ x
� K0�Z, x�

�
T0�x� dx

�
� ÿ2h0

k
�33�

where K0 is Holder-continuous along ÿcRxRc and is given by

K0�Z, x� � ÿz�t
24@zp=@zt

zp

ÿ 1

zt
�
1ÿ xt �z

�
t

�35@zt
@zt

�34�

where

zp � a1t ÿ a2t
ztz
�
t

�
�
a3t ÿ a4t

zmt z
�m
t

�Xmÿ1
k�0

zkt z
�mÿkÿ1
t �35�

During the derivation of Eq. (33), the following relation has been employed

ln
ÿ
zt ÿ z�t

� � ln�zt ÿ ẑt� ÿ ln zp �36�

Fig. 2. Geometry of the crack-hole system.
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For a single-valued temperature around a closed contour surrounding the whole crack, the following
auxiliary condition has to be satis®ed�c

ÿc
T0�x� dx � 0 �37�

The singular integral equation (33) for the temperature discontinuity density combined with Eq. (37) can
be solved numerically (Erdogan and Gupta, 1972). Since the solution for the functions, T0�x�, has a
square root singular at both crack tips, it is more e�cient for the numerical calculations by letting

T0�x� � Y�x�����������������
c2 ÿ x2

p �38�

where Y�x� is a regular function de®ned in a closed interval jxjRc: Once the function Y�x� has been
found, the corresponding SED can be given from Eqs. (1f) and (29) in the form

P1�Z� � ÿ 1

2p

�c
ÿc

Im
n
ÿ BP

h
F
0
�1�z� � F

0
�2�z�Pÿ1 �t

i
Bÿ1 Åd� tdg

0
��zt �

o
T0�x� dx �39�

P2�Z� � 1

2p

�c
ÿc

Im
n
ÿ B

h
F
0
�1�z� � F

0
�2�z�Pÿ1 �t

i
Bÿ1 Åd� tdg

0
��zt �

o
T0�x� dx �40�

where

P � diag
�
p1 p2 p3 p4

� �41�

F�i�z� � diag
�
f�i�z1� f�i�z2� f�i�z3� f�i�z4�

�
, i � 1, 2 �42�

f�i�zk � � a
h
F1

ÿ
zk, z

�
t

�� F2

ÿ
zk, z

�
t

�ÿ F1

�
zÿ1k , �z

�
t

�
ÿ F2

�
zÿ1k , �z

�
t

�i
=2

�ej1ag
�
F3

ÿ
zk, z

�
t

�� F4

ÿ
zk, z

�
t

�ÿ F3

�
zÿ1k , �z

�
t

�
ÿ F4

�
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Thus the traction-charge vector on the crack faces is of the form
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tn0�Z� � ÿP1�Z� sin a�P2�Z� cos a �45�

It is, generally, that tn0�Z�6�0 on the crack faces jZjRc: To satisfy the traction-charge free condition (30b)
on the crack faces, we must superpose a solution of the corresponding isothermal problem with a
traction-charge vector equal and opposite to that of Eq. (45) in the range jZjRc: The electroelastic
solution for a single dislocation of strength b0 in an in®nite plate with a hole is thus required. This
solution can be developed in a way similar to that given in Section 3.1. By applying the conformal
mapping mentioned above and the perturbation concept (Stagni, 1982), the general electroelastic
solution for the hole problem can be expressed as (Hwu and Yen, 1993)

u � 2Re
�
Af0�z� � Af1�z�

� �46�

fff � 2Re
�
Bf0�z� � Bf1�z�

� �47�

in which the one-complex-variable approach introduced by Suo (1990) is adopted to make the
derivation tractable. The approach stated that whether a function is analytic is not a�ected by di�erent
arguments zk, and once a solution of f�z� is obtained, the argument z should be replaced by zk, to
compute the related ®elds. This approach allows the standard matrix algebra to be used in conjunction
with the techniques of analytic functions of one variable, and thus by pass some complexities arising
from the use of four complex variables. f0 represents the function associated with the unperturbed
electroelastic ®eld which is related to the solutions of homogeneous media, f1 the function
corresponding to the perturbed ®eld of the matrix.

For a in®nite plate subject to a line dislocation b0 located at ẑk, or z�k the function f0 can be assumed
in the form (see Ting, 1992)

f0�z� �


ln
ÿ
zk ÿ z�k

��
q0 �48�

where h� �ki � diag� � �1 � �2 � �3 � �4 � and q0 can be determined by the condition (Ting, 1992)�
c

du � b0 for any closed curve C enclosing the point z�k �49�

Substitution of Eq. (48) into Eq. (49), yields

q0 �
BTb0

2pi
�50�

Thus the traction free condition on the hole boundary provides

ÅB f0�eic � � Bf1�eic� � ÿBf0�eic � ÿ ÅB f1�eic � �51�

By the method of analytic continuation one sees (Hwu and Yen, 1993)

f1�z� � ÿBÿ1 ÅB f0
ÿ
1=�z

�
�52�

The function f1�z� can be written explicitly in terms of zk by substituting Eq. (48) into Eq. (52) with the
understanding that the subscript of z is dropped before the multiplication of matrices and a replacement
of zk should be made for each component function of f1�z� after the multiplication of matrices. This
results in (Hwu and Yen, 1993)
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f1�z� �

X4
b�1

D
ln
�
zÿ1k ÿ �z

�
b

�E
Bÿ1 ÅBIb ÅB

T
b0

2pi
�53�

where Ib�diag� d1b d2b d3b d4b �, dij � 1 for i � j; dij � 0 for i 6�j:
Using Eqs. (45), (48) and (53), the boundary condition (31) can be expressed by (Qin, 1998)

L

2p

�c
ÿc

b0�x� dx
Zÿ x

� 1

p

�c
ÿc

K0�Z, x�b0�x� dx � ÿt0n�Z� �54�

where

L � ÿ2iBBT �55�

K0�Z, x� � ÿIm

8<:B

�
z�k
@zkp=@zk

zkp

@zk
@zk

�
BT �

X4
b�1

B

*
z�k

zk
�
1ÿ zk �z

�
k

� @zk
@zk

+
Bÿ1 ÅBIb ÅB

T

9=; �56�

and z�j , Z and x are de®ned by

z�j � cos a� pjsin a, zj � Zz�j � z0j , ẑb � xz�b � z0b �57�

zkp � a1k ÿ a2k
zkz
�
k

�
�
a3k ÿ a4k

zmk z
�m
k

�Xmÿ1
j�0

z j
k z
�mÿjÿ1
k �58�

where L is a real matrix, and K0�Z, x� is a kernel function of the singular integral equations and is
Holder-continuous along ÿcRxRc:

For single valued displacements and electric potential around a closed contour surrounding the whole
crack, the following conditions have also to be satis®ed�c

ÿc
b0�x� dx � 0 �59�

As was done previously, let

b0�x� � YYY�x�����������������
c2 ÿ x2

p �60�

Once the function Y�x� has been found from Eqs. (54) and (59), the stresses and electric displacements,
PPPn�Z�, in a coordinate system local to the crack line can be expressed in the form

PPPn�Z� � OOO�a�
�

L

2p

�c
ÿc

b0�x� dx
Zÿ x

� 1

p

�c
ÿc

K0�Z, x�b0�x� dx� t0n�Z�
�

�61�

where the 4� 4 matrix OOO�a� whose components are the cosine of the angle between the local coordinates
and the global coordinates is in the form (Qin, 1998)
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OOO�a� �

2664
cos a sin a 0 0
ÿsin a cos a 0 0
0 0 1 0
0 0 0 1

3775 �62�

Using Eq. (61) we can evaluate the stress intensity factors K� � �KII, KI, KIII, KD�T at the tips, e.g., at
the right tip �x � c� of the crack by following de®nition:

K� � lim
x4 c
�

�������������������
2p�xÿ c�

p
PPPn�x� �63�

Combined with the results of Eq. (61), one then leads to

K�1
������
p
4c

r
OOO�a�LYYY�c� �64�

Thus, the solution of the singular integral equation enables the direct determination of the stress
intensity factors.

5. Numerical examples

As a numerical illustration of the proposed method, two simple examples are considered. One is a
piezoelectric ceramic (BaTiO3) plate with a crack of length 2c and a square hole, and another is an
in®nite isotropic elastic plate containing a circular and a crack. The purpose we consider the second
example is for comparison with the existing results.

5.1. Example 1

Consider a piezoelectric ceramic (BaTiO3) plate with a crack of length 2c and a square hole shown in
Fig. 2, in which x10 � 0, x20 � 3c, m � 3, e � 1, a � 1:8c and g � 0:2c: The material properties of the
plate are given by Qin and Mai (1998):

c11 � 150 GPa, c12 � 66 GPa, c13 � 66 GPa, c33 � 146 GPa, c44 � 44 GPa,

a11 � 8:53� 10ÿ6=K, a33 � 1:99� 10ÿ6=K, l3 � 0:133� 105 N=CK,

e31 � ÿ4:35 C=m 2, e33 � 17:5 C=m 2, e15 � 11:4 C=m2, k11 � 1115k0,

k33 � 1260k0, k0 � 8:85� 10ÿ12 C 2=Nm
2 � Perimitivity of free space �65�

where cij, eij and kij, respectively, are the elastic moduli, piezoelectric constants and dielectric constants,
a11 and a33 are thermal expansion constants, and l3 is a pyroelectric constant.

Since the values of the coe�cient of heat conduction for BaTiO3 could not be found in the literature,
the value k22=k11 � 1:5, k12 � 0 and k11 � 1 W/mK are assumed. Moreover, the plane strain
deformation is assumed in our analysis and the crack lines are assumed to be in the x1±x2 plane, i.e.,
D3 � u3 � 0: Therefore the stress intensity factor vector K now has only three components(KII, KI, KD).
Fig. 3 shows the numerical results for the coe�cients of stress intensity factors bi versus the crack
orientation a, where bi, are de®ned by
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KI�A� � h20c
�����
pc
p

g33b1�a�=k

KII�A� � h20c
�����
pc
p

g11b2�a�=k

KD�A� � h20c
�����
pc
p

w3bD�a�=k �66�
where8<: g11

g33
w3

9=; �
24 c11 c13 e31
c13 c33 e33
e31 e33 ÿk33

358<: a11
a33
l3

9=; �67�

However, numerical results for such a problem are not available in the literature yet. For comparison,
the well-known ®nite element method (FEM) is used to obtain the corresponding results (Oden and
Kelley, 1971). In the FEM analysis, four meshes �M�N, 48� 40, 72� 60, 96� 80, 120� 100, where M
and N are the element number on the side AB and side BC shown in Fig. 4) have been used to show the
convergence of the FE results. For illustration, Fig. 4 shows the con®guration of a particular element
mesh (M = 48, N = 40 and a � 458). Moreover, In order to accurately calculate the SED distribution
at the crack tip, the mesh density has been increased near the crack tip. A typical ®nite element mesh
�a � 458� near crack tip is shown in Fig. 4(b). In the calculation, an eight-node quadrilateral element
model has been used. In addition, the three nodes along one of the sides of each of the quadrilateral
element are collapsed at the crack tip and the two adjoining mid points are moved to the quarter
distances, in order to produce 1=r1=2 type of singularity. Table 4 shows that the FE results can converge
to a particular value along with the mesh re®nement. It can be seen from Fig. 3 that all the coe�cients
bi,�i � 1, 2, D� are not very sensitive to the crack orientation a, but slightly vary with it. It is also found
from Fig. 3 that the numerical results obtained from the two models(FEM and proposed method) are in
good agreement.

Further, to study the e�ects of mapping points on the numerical results, the calculation for SED
intensity factors versus crack orientation a with di�erent value of zk (see section Section 2.2) has been
carried out and the results are presented in Fig. 5, where line jzk1j > jzk2j > jzk3j > jzk4j: It is found from

Fig. 3. Coe�cients bi�i � 1, 2, D� vs. crack angle aM � 120, N = 100).
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Fig. 5 that the proposed formulation can give results consistent with those from FEM (in the FE
calculation, the mesh M�N � 120� 100 has been used) if we chose zk1 as the solution for Eq. (4),
while other values of zk produce unacceptable results.

5.2. Example 2

Consider a two-dimensional, linear, isotropic, thermoelastic plate which occupies the �r, y� plane and
contains a circular hole 0RrRa, 0RyR2p, with a radial edge crack of length c on the line y � 0: The
plate is subjected to a uniform heat ¯ow h0 as shown in Fig. 6. The problem was discussed by Hasebe et
al. (1988) and can be treated as a degenerated case of the thermopiezoelectric problem. Fig. 7 shows the
variation of normalized stress intensity factors(b1 for y0 � 08 and b2 for y0 � 908� with the ratio c=a and
comparison is made with those given in (Hasebe et al., 1988). The coe�cients bi are de®ned as

Fig. 4. (a) A typical mesh for element analysis (M = 48, N = 40), (b) mesh near crack tip.

Table 4

FE results versus mesh re®nement �a � 0)

Mesh (M�N ) b1 b2 bD

48� 40 0.9687 0.6203 0.4085

72� 60 0.9783 0.6271 0.4168

96� 80 0.9848 0.6308 0.4210

120� 100 0.9870 0.6321 0.4221
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ah0Gb1�2�

�����������������������
p
�
a� c

2

�3
s

�68�

where k is the thermal conductivity, a the coe�cient of thermal expansion, G the shear modulus and n
Poisson's ratio. It can be seen from Fig. 7 that b140 for both c=a40 and c=a41 as well as b240
for c=a40 and b240:5 for c=a41, which are in agreement with the analytical results (Hasebe et al.,
1988).

Fig. 5. Coe�cients b1 vs. crack angle a (1-with z1, 2-with z2, 3-with z3, 4-with z4).

Fig. 6. In®nite region with a cracked circular hole under uniform heat ¯ow.
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6. Conclusion

The general thermoelectroelastic solutions are presented for an in®nite piezoelectric plate with various
holes induced by thermal loads. The derivation is based on the Stroh formalism and the method of
conformal mapping. The solutions satisfy traction-charge free as well as thermal-insulated conditions
along the hole boundary. The key question for such a problem is that the transformation of a
piezoelectric polygonal hole into a circle is not single-valued. In this paper, a simple approach is
presented to treat this problem. Using the solutions developed here, a system of singular integral
equations for the unknown temperature discontinuity de®ned on crack faces is developed to study the
interaction between crack and hole. Numerical results of SED intensity factors for an in®nite plate with
one crack and a square hole are presented to illustrate the application of the proposed formulation. The
numerical results show that an reasonable result can be obtained if we chose xk1, whose magnitude has a
minimum value among m-toots, as the solution for Eq. (4). The proposed method was further veri®ed
by the numerical comparison with the existing results (Hasebe et al., 1988).

Acknowledgements

The author wish to thank the Australian Research Council (ARC) for the continuing support of this
work with a Queen Elizabeth II fellowship and the Australian Academy of Science by J.G. Russell
Award. The comments and suggestions provided by anonymous reviewers of an earlier draft of this
paper are also gratefully acknowledged.

References

Barnett, D.M., Lothe, J., 1975. Dislocations and line charges in anisotropic piezoelectric insulators. Phys. Stat. Sol. (b) 67, 105±

111.

Chen, W.T., 1967. Plane thermal stress at an insulated hole under uniform heat ¯ow in an orthotropic medium. J. Appl. Mech 34,

133±136.

Chung, M.Y., Ting, T.C.T., 1996. Piezoelectric solid with an elliptic inclusion or hole. Int. J. Solids Struct 33, 3343±3361.

Dhir, S.K., 1981. Optimization in a class of hole shapes in plate structures. J. Appl. Mech 48, 905±908.

Erdogan, F., Gupta, G.D., 1972. On the numerical solution of singular integral equations. Q. Appl. Math 32, 525±534.

Fig. 7. Nondimensional stress intensity factors b1 for y0 � 08 and b2 for y0 � 908:

Q.-H. Qin / International Journal of Solids and Structures 37 (2000) 5561±5578 5577



Evan-Iwanowski, R.M., 1956. Stress solutions for an in®nite plate with triangular Inlay. J. Appl. Mech 23, 336±338.

Florence, A.L., Goodier, J.N., 1960. Thermal stresses due to disturbance of uniform heat ¯ow by an insulated Ovaloid hole. J.

Appl. Mech 27, 635±639.

Gao, H., 1992. Stress analysis of holes in anisotropic elastic solids: conformal mapping and boundary perturbation. Q. J. Mech.

Appl. Math 45, 149±168.

Hasebe, N., Tomida, A., Nakamura, T., 1988. Thermal stresses of a cracked circular hole due to uniform heat ¯ux. J. Thermal

Stresses 11 (1988), 381±391.

Hwu, C., 1990. Anisotropic plates with various openings under uniform loading or pure bending. J. Appl. Mech 57, 700±706.

Hwu, C., 1992. Polygonal holes in anisotropic media. Int. J. Solids & Struct 29, 2369±2384.

Hwu, C., Yen, W.J., 1991. Green's functions of two-dimensional anisotropic plates containing an elliptic hole. Int. J. Solids Struct

27, 1705±1719.

Hwu, C., Yen, W.J., 1993. On the anisotropic elastic inclusions in plane elastostatics. J. Appl. Mech 60, 626±632.

Jong, T.D., 1981. Stresses around rectangular holes in orthotropic plates. J. Comp. Mat 15, 311±328.

Kachanov, M., Tsukrov, I., Sha®ro, B., 1994. E�ective moduli of solids with cavities of various shapes. Appl. Mech. Rev 47

(1994), S151±S174.

Lekhnitskii, S.G., 1968. Anisotropic Plates. Gordon and Breach, London.

Mindlin, R.D., 1974. Equations of high frequency vibrations of thermopiezoelectric crystal plates. Int. J. Solids & Struct 10, 625±

637.

Oden, J.T., Kelley, B.E., 1971. Finite element formulation of general electrothermoelasticity problems. Int. J. Numer. Meth. Eng 3,

161±179.

Qin, Q.H., 1998. Thermoelectroelastic Green's function for a piezoelectric plate containing an elliptic hole. Mechanics of Materials

30, 21±29.

Qin, Q.H., Mai, Y.W., Yu, S.W., 1999. Some problems in plane thermopiezoelectric materials with defects. Int. J. Solids Struc 36,

427±439.

Rajaiah, K., Naik, N.K., 1983. Optimum Quasi-rectangular holes in in®nite orthotropic plates under in-plane loadings. J. Appl.

Mech 50, 891±892.

Sosa, H., Khutoryansky, N., 1996. New developments concerning piezoelectric materials with defects. Int. J. Solids Struct 33,

3399±3414.

Stagni, L., 1982. On the elastic ®eld perturbation by inhomogeneous in plane elasticity. ZAMP 33, 313±325.

Sturla, F.A., Barber, J.R., 1988. Thermal stresses due to a plane crack in general anisotropic material. J. Appl. Mech 55, 372±376.

Suo, Z., 1990. Singularities, interfaces and cracks in dissimilar anisotropic media. Proc. R. Soc. Lond A427, 331±358.

Ting, T.C.T., 1992. Image singularities of Green's functions for anisotropic elastic half-space and bimaterials. Q. J. Mech. Appl.

Math 45, 119±139.

Ting, T.C.T., 1996. Green's functions for an anisotropic elliptic inclusion under generalized plane strain deformations. Q. J. Mech.

Appl. Math 49, 1±18.

Wang, Y.M., Tarn, J.Q., 1993. Green's functions for generalized plane problems of anisotropic bodies with a hole or a rigid

inclusion. J. Appl. Mech 60, 583±588.

Yen, W.J., Hwu, C., Liang, Y.K., 1995. Dislocation inside, outside or on the interface of an anisotropic elliptical inclusion. J.

Appl. Mech 62 (1995), 306±311.

Zimmerman, R.W., 1986. Compressibility of two-dimensional cavities of various shapes. J. Appl. Mech 53, 500±504.

Q.-H. Qin / International Journal of Solids and Structures 37 (2000) 5561±55785578


